Control of cerium oxidation state through metal complex secondary structures

نویسندگان

  • Jessica R. Levin
  • Walter L. Dorfner
  • Patrick J. Carroll
  • Eric J. Schelter
چکیده

A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M 1⁄4 Li, Na, and K, x 1⁄4 4 (Li and Na) or 5 (K), and y1⁄4 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M 1⁄4 Li or Na, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M 1⁄4 K, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox control of a polymerization catalyst by changing the oxidation state of the metal center.

The activity of cerium alkoxide complexes supported by a Schiff base ligand was controlled using redox reagents during the ring-opening polymerization of L-lactide. The rate of L-lactide polymerization was modified by switching in situ between the cerium(III) and cerium(IV) species.

متن کامل

A Macrocyclic Chelator That Selectively Binds Ln4+ over Ln3+ by a Factor of 1029.

A tetravalent cerium macrocyclic complex (CeLK4) was prepared with an octadentate terephthalamide ligand comprised of hard catecholate donors and characterized in the solution state by spectrophotometric titrations and electrochemistry and in the crystal by X-ray diffraction. The solution-state studies showed that L exhibits a remarkably high affinity toward Ce4+, with log β110 = 61(2) and ΔG =...

متن کامل

Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform micr...

متن کامل

Preparation of Nickel Nanoparticles by Intramolecular Reaction of Nickel(II) Hydrazine Complex in the Solid State at Room Temperature

Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10 complex was prepared according to literature report. The reaction between aforementioned complex via sodium alkoxides as a reactants, were carried out in the solid state. The [Ni6(N2H4)6(SO4)4(OH)2(H2O)8](SO4)(H2O)10 undergoes an intramolecular two electrons oxidation-reduction reaction at room temperature and metallic nickel nanoparticles (Ni1-Ni5) was ...

متن کامل

Deactivation of Ceria Supported Palladium through Câ•fiC Scission during Transfer Hydrogenation of Phenol with Alcohols

The stability of palladium supported on ceria (Pd/CeO2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015